MONTGOMERY COLLEGE - Germantown Campus

Mathematics & Statistics Department

Course Syllabus

I. Instructor Information

Professor: Dr. Zhou Dong Email: Zhou.Dong@MontgomeryCollege.edu ¹Phone: (240) 567-7810 ²Office: HT 134 Office Hours: <u>By appointment</u>

II. General Course Information

Scientific Research Honors Module – SCIR 297HC

PREREQUISITE: MATH 181

HONORS ELIGIBILITY:

• SAT score of 600 or above on each section OR

- Completion of at least 12 Montgomery College credits with 3.2+ GPA
- Grade of A or B in ENGL 101/011 or Eligible for ENGL 102

Summer 2021: CRN 47103 Class Times: TBA Teams meeting link for class meetings

III. Specific Outcomes

Designed for the promising science, engineering, or mathematics (SEM) student who would like to build upon general SEM skills learned from general courses in order to generate competency in scientific critical thinking and research. This course enables SEM students to pursue research topics of their own choosing with the guidance and supervision of an assigned faculty member. Students should have a strong interest in SEM and be committed toward completion of a multi-semester and interdisciplinaryspanning research project. Projects will not duplicate curriculum content but will expand on that content.

¹ If you call, please leave a message.

² I will not be available in my office during Remote Instruction. Virtual class meetings and office hours held online via Microsoft Teams. Best way to reach me during Remote Instruction is to message me on Microsoft Teams.

Z. Dong

IV. Text and Supplies

Language, Proof and Logic (2nd edition), by Dave Barker-Plummer, Jon Barwise and John Etchemendy, in collaboration with Albert Liu, Michael Murray and Emma Pease, CSLI Publications, 2011 Packaged Software: Boole, Fitch, and Tarski's World Free online course (audit): https://www.edx.org/course/language-proof-and-logic

<u>Open Logic Text</u>: An Open-Source, Collaborative Logic Text, by Richard Zach, Andrew Arana, Jeremy Avigad, Tim Button, Walter Dean, Gillian Russel, Nicole Wyatt, and Audrey Yap

Download at: https://openlogicproject.org/

V. Grading

A. Requirements

The student is required to

- Attend and participate in all class meetings
- Complete readings and homework as assigned
- Present in class on a topic from the Open Logic Text which is not covered in the Language, Proof and Logic course
- Create a group presentation at the end of the semester to be give as a math department student talk during the Fall 2021 semester

B. Course Grade

Attendance/Participation	20%
Midterm Exam	20%
Final Exam	20%
Individual Presentation	20%
Group Presentation	20%

 $\begin{array}{l} A = 90\% - 100\% \\ B = 80\% - 90\% \\ C = 70\% - 80\% \\ D = 60\% - 70\% \\ F < 60\% \end{array}$

VI. Student Code of Conduct and Collegewide Policies and Procedures http://cms.montgomerycollege.edu/mcsyllabus/

VII. Campus Resources

A. Student Health and Wellness

http://cms.montgomerycollege.edu/student-healthand-wellness/fuel-for-success/

The professor reserves the right to make changes to this syllabus.

Open Logic Text

VIII. Course Schedule

Week	Language. Proof and Logic Course	
W CCK		

Week 1	Welcome to Proof, Language and Logic	Discuss possible individual	
Julie 1 - 4 Wook 2	Chantor 1: Atomic Sontoncos	Soloct individual procentation topics	
lune 7 – 11	Assignment 1	Select individual presentation topics	
June 7 - 11	Chanter 2: The Logic of Atomic Sentences		
	Assignment 2		
Week 3	Chapter 3: The Boolean Connectives	Read selected tonic	
June 14 – 18	Assignment 3		
	Chapter 4: The Logic of Boolean		
	Connectives		
	Assignment 4		
Week 4	Chapter 5: Methods of Proof for Boolean	Read selected topic	
June 21 – 25	Logic		
	Assignment 5		
	Chapter 6: Formal Proofs and Boolean Logic		
	Assignment 6		
Week 5	Chapter 7: Conditionals	Read selected topic	
June 28 – July 2	Assignment 7		
	Chapter 8: The Logic of Conditionals		
	Assignment 8		
Week 6	Propositional Logic Summery	Read selected topic	
July 6 – 9	Midterm Exam		
	Assignment 9		
	Chapter 10: The Logic of Quantifiers		
	Assignment 10		
Week 7	Chapter 11: Multiple Quantifiers	Draft individual presentation	
July 12 – 16	Assignment 11		
,	Chapter 12: Methods of Proof for		
	Quantifiers		
	Assignment 12		
Week 8	Chapter 13: Formal Proofs and Quantifiers	Finalize individual presentation	
July 19 - 23	Assignment 13		
	Chapter 14: More About Quantification		
	Assignment 14		
Week 9	Course Summary	Individual Presentations	
July 26 – 30	Final Exam		
Week 10	Draft group presentation		
August 2 - 6			
VVEEK 11	Finalize group presentation		
August 9 - 13			

The professor reserves the right to make changes to this syllabus.